Supervised Classification Based on Copula Functions
نویسندگان
چکیده
This paper exposes the research being done about the incorporation of copula functions in supervised classification. It is shown, by means of pixel classification, the advantages that modeling dependencies provides to supervised classification and the benefits of doing it through copula functions which are not limited to linear dependencies. The experiments executed so far, show positive results by having improved the performance of the classifiers that do not have copulas incorporated.
منابع مشابه
Supervised Probabilistic Classification Based on Gaussian Copulas
This paper introduces copula functions and the use of the Gaussian copula function to model probabilistic dependencies in supervised classification tasks. A copula is a distribution function with the implicit capacity to model non linear dependencies via concordance measures, such as Kendall’s τ . Hence, this work studies the performance of a simple probabilistic classifier based on the Gaussia...
متن کاملUsing Gaussian Copulas in Supervised Probabilistic Classification
This chapter introduces copula functions and the use of the Gaussian copula function to model probabilistic dependencies in supervised classification tasks. A copula is a distribution function with the implicit capacity to model non linear dependencies via concordance measures, such as Kendall’s τ . Hence, this chapter studies the performance of a simple probabilistic classifier based on the Ga...
متن کاملGJR-Copula-CVaR Model for Portfolio Optimization: Evidence for Emerging Stock Markets
Abstract T his paper empirically examines the impact of dependence structure between the assets on the portfolio optimization, composed of Tehran Stock Exchange Price Index and Borsa Istanbul 100 Index. In this regard, the method of the Copula family functions is proposed as powerful and flexible tool to determine the structure of dependence. Finally, the impact of the dep...
متن کاملTail dependence functions and vine copulas
Tail dependence and conditional tail dependence functions describe, respectively, the tail probabilities and conditional tail probabilities of a copula at various relative scales. The properties as well as the interplay of these two functions are established based upon their homogeneous structures. The extremal dependence of a copula, as described by its extreme value copulas, is shown to be co...
متن کاملComposite Kernel Optimization in Semi-Supervised Metric
Machine-learning solutions to classification, clustering and matching problems critically depend on the adopted metric, which in the past was selected heuristically. In the last decade, it has been demonstrated that an appropriate metric can be learnt from data, resulting in superior performance as compared with traditional metrics. This has recently stimulated a considerable interest in the to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Research in Computing Science
دوره 133 شماره
صفحات -
تاریخ انتشار 2017